
Mehran Sahami Handout #45

CS 106A December 3, 2007

Section Handout #9: Objects and Data structures
Parts of this handout by Eric Roberts and Patrick Young

1. Primitive vs. Objects

Let's say a student writes the following line of code in a predicate method (i.e., a method

that returns a boolean):

 public boolean IsNameQ() {

 String name = readLine("Enter name: ");

 return (name == "Q");

 }

The author of this code thinks that the program will return true if the player’s name is

"Q". What’s the problem here?

Now consider if the code were written as:

 public boolean IsNameQ() {

 String name = readLine("Enter name: ");

 char ch = name.charAt(0);

 return ((ch == 'Q') && (name.length() == 1));

 }

How is the code above different with respect to checking for equality with the value "Q"?

Continued on next page

 – 2 –

2. Data structure design

So far in CS106A, we've worked a good deal with arrays and ArrayLists. While arrays

have fixed sized, ArrayLists grow as more elements are added (usually, to the end). We

could think of potentially an even more powerful idea: an expandable array. The idea

here is that we could think of an array that dynamically expanded to accomodate whatever

index we try to access. For example, if we started with an empty array, and tried to add

an element at index 14, the array would automatically grow large enough, so that

elements 0 through 14 all existed (and we could store the given value at index 14). All

the elements of the array that had not previously been given a value would have the value

null. Then if we tried store a value at, say, index 21, the array would again grow

automatically to have space for elements up to an including index 21. Note that the value

at index 14 would still appear to be at index 14 in the expanded array.

Being able to expand an array dynamically is useful enough that it might be worth

creating an abstraction to implement it. Such an abstraction is shown in Figure 1 (on the

next page), which shows the structure of an ExpandableArray class that allows the client

to call set on an index even if it doesn’t currently exist in the array. When such a

situation occurs, the implementation of the ExpandableArray class has to allocate a new

internal array that is large enough to hold the desired element and then copy all of the

existing elements into the new array. The point of this problem is simply to make that

operation general by creating a new class that provides the functionality, and we make the

class sufficiently general by having it be able to store any type of object (hence the use of

the type Object for the array elements). To create an expandable array, and set some of

it's values (whih in this case are Strings), you might have code such as:

ExpandableArray myList = new ExpandableArray();

myList.set(14, "Bob");

myList.set(21, "Sally");

When you wanted to retrieve the value at a particular element of the expandable array,

you could do something like the following:

String value = (String) myList.get(14); // Note the cast

if (value != null) {

 println("Got value: " + value);

}

In writing your solution, you should keep the following points in mind:

• The underlying structure in your implementation must be an array of objects.

Although using a HashMap might well be easier, it will be less efficient than the array

in terms of the time necessary to look up a specific index.

• Notice that the definition of the abstraction explicitly states that the get method should

return null if the specified index value does not exist. That means that you will need

to check whether the index is out of bounds before trying to select that element.

• You may assume that all of the index values supplied by the client are nonnegative and

do not need to check for such values in the implementations of get and set.

 – 3 –

Figure 1. Proposed structure of the ExpandableArray class

/**

 * This class provides methods for working with an array that expands

 * to include any positive index value supplied by the caller.

 */

public class ExpandableArray {

/**

 * Creates a new expandable array with no elements.

 */

 public ExpandableArray() {

 . . . You fill in the implementation . . .
 }

/**

 * Sets the element at the given index position to the specified.

 * value. If the internal array is not large enough to contain that

 * element, the implementation expands the array to make room.

 */

 public void set(int index, Object value) {

 . . . You fill in the implementation . . .
 }

/**

 * Returns the element at the specified index position, or null if

 * no such element exists. Note that this method never throws an

 * out-of-bounds exception; if the index is outside the bounds of

 * the array, the return value is simply null.

 */

 public Object get(int index) {

 . . . You fill in the implementation . . .
 }

}

