
Mehran Sahami Handout #6
CS 106A September 26, 2007

Using Karel with Eclipse
Based on a handout by Eric Roberts

Once you have downloaded a copy of Eclipse as described in Handout #5, your next task
is to understand how to write Karel programs using the Eclipse framework. Although it is
not all that hard to create new Eclipse projects from scratch, it certainly reduces the
complexity of assignments if we provide starter projects to get you going. That way, you
can ignore all the mechanical details of making new projects and focus instead on the
problem-solving aspects of the assignments.

Downloading starter projects
The first step in working with any Karel assignment is to download the starter project for
that assignment. If you go to the CS106A assignment page (go to the CS106A web site
and click the Assignments link), you’ll see a display that looks like something this:

If you click on the link for Assignment1.zip, your web browser will download the
starter folder. In some cases, the browser will also unzip/extract the folder automatically,
assuming that you have the appropriate software for expanding files from a ZIP archive.
The notes on the assignment page above tell you what software you need. The unzipped
contents of the ZIP file is a directory named Assignment1 that contains the project. Move
that folder to someplace on your file system where you can keep track of it when you
want to load the project.

Importing projects into the workspace
From here, your next step is to start up Eclipse, which will bring up the Eclipse window
shown on the last page of Handout #5. Find the small icon in the toolbar that looks like:

 – 2 –

This button is the Import Project button and is used to copy a project folder into the Eclipse
workspace so that you can work with it. Click on this button and then use the Browse
option to find the Assignment1 folder. When you do so, Eclipse will load the starter
project and display its name in the Package Explorer window like this:

The small triangle to the left of the folder name indicates that you can open it to reveal its
contents. When you click on the triangle, it exposes the first level of the package:

Note that you likely may not see the "JRE System Library" line displayed in the graphic
above (or if you do, it may have a different number like 1.5 or 1.6, rather than 1.4.2).
Nevertheless, at this point things look a more promising – there is something about Karel
there on the last line. But things get more interesting when you open the default package,
which is where the code you will write this quarter will go. Opening this package reveals

 – 3 –

Now things have gotten much more exciting. There—right on the screen—are the Java
files for each of the assignments. You can open any of these files by double-clicking on
its name. If you double-click on CollectNewspaperKarel, for example, you will see the
following file appear in the editing area in the upper right section of the Eclipse screen:

Note that the comments at the top of the file many not display initially and may need to
be "expanded" by clicking the small '+' sign next to the comment header line.

As you might have expected, the file we included in the starter project doesn’t contain the
finished product but only the header line for the class. The actual program must still be
written. If you look at the assignment handout, you’ll see that the problem is to get Karel
to collect the “newspaper” from outside the door of its “house” as shown in this diagram:

1 2 3 4 5 6 7

1

2

3

4

5

Suppose that you just start typing away and create a run method with the steps on the
following page:

 – 4 –

public void run() {
 move();
 turnRight();
 move();
 turnLeft()
 move();
 pickBeeper();
}

The bug symbol off to the side lets you know that this program isn’t going to do exactly
what you want, but it is still interesting to see what happens. Eclipse compiles your
program file every time you save it and then tells you abut any errors it found. In this
case, saving the file generates the following information in the two right-hand windows:

The Problems screen shows the error messages, which are also highlighted with the
symbol in the editor window. Here, the error message is extremely clear: there is a
missing semicolon at the end of the indicated line. This type of error is called a syntax
error because you have done something that violates the syntactic rules of Java. Syntax
errors are easy to discover because Eclipse finds them for you. You can then go back, add
the missing semicolon, and save the file again. This time, the Problems screen shows:

 – 5 –

Even though part of the error message is cut off, the reason for the problem is clear
enough. The Karel class understands turnLeft as a command, but not turnRight. Here
you have two choices to fix the problem. You can either go back and add the code for
turnRight or change the header so that CollectNewspaperKarel extends SuperKarel
instead. Fixing this problem leads to a successful compilation in which no errors are
reported in the Problems screen.

Even though the program is not finished—both because it fails to return Karel to its
starting position and because it doesn’t decompose the problem to match the solution
outline given in the assignment—it may still make sense to run it and make sure that it
can at least pick up the newspaper.

Running a Karel program under Eclipse
Running a program under Eclipse makes use of the two buttons on the tool bar that look
like this:

The button on the left causes Eclipse to search the workspace for all runnable programs
and ask you which one you want to run. Since all four programs from Assignment 1 are
part of the workspace, clicking this button will generate a list containing the names of the
four Karel classes. The button on the right is a “faster” version of the run button that
skips the search for runnable programs and just runs the same program you ran most
recently during this Eclipse session.

If you then select CollectNewspaperKarel from the list of programs that appears,
Eclipse will start the Karel simulator and, after several seconds, display a window that
looks like the picture on the next page:

 – 6 –

If you then press the Start Program button, Karel will go through the steps in the run
method you supplied.

In this case, however, all is not well. Karel begins to move across and down the window
as if trying to exit from the house, but ends up one step short of the beeper. When Karel
then executes the pickBeeper command at the end of the run method, there is no beeper
to collect. As a result, Karel stops and displays an error dialog that looks like this:

This is an example of a logic error, which is one in which you have correctly followed
the syntactic rules of the language but nonetheless have written a program that does not
correctly solve the problem. Unlike syntax errors, the compiler offers relatively little help
for logic errors. The program you’ve written is perfectly legal. It just doesn’t do the right
thing.

Debugging

“As soon as we started programming, we found to our surprise that it wasn’t as
easy to get programs right as we had thought. Debugging had to be discovered.
I can remember the exact instant when I realized that a large part of my life
from then on was going to be spent in finding mistakes in my own programs.”

— Maurice Wilkes, 1979

 – 7 –

More often than not, the programs that you write will not work exactly as you planned
and will instead act in some mysterious way. In all likelihood, the program is doing
precisely what you told it to. The problem is that what you told it to do wasn’t correct.
Programs that fail to give correct results because of some logical failure on the part of the
programmer are said to have bugs; the process of getting rid of those bugs is called
debugging.

Debugging is a skill that comes only with practice. Even so, it is never too early to
learn the most important rule about debugging:

In trying to find a program bug, it is far more important to
understand what your program is doing than to understand what it
isn’t doing.

Most people who come upon a problem in their code go back to the original problem and
try to figure out why their program isn’t doing what they wanted. Such an approach can
be helpful in some cases, but it is more likely that this kind of thinking will make you
blind to the real problem. If you make an unwarranted assumption the first time around,
you may make it again, and be left in the position that you can’t for the life of you see
why your program isn’t doing the right thing.

When you reach this point, it often helps to try a different approach. Your program is
doing something. Forget entirely for the moment what it was supposed to be doing, and
figure out exactly what is happening. Figuring out what a wayward program is doing
tends to be a relatively easy task, mostly because you have the computer right there in
front of you. Eclipse has many tools that help you monitor the execution of your
program, which makes it much easier to figure out what is going on. You’ll have a
chance to learn more about these facilities in the coming weeks.

Creating new worlds
The one other thing you might want to know about is how to create new worlds. The
three buttons on Karel’s control panel

Do pretty much what you’d expect. The Load World button brings up a dialog that allows
you to select an existing world from the file system, New World allows you to create a new
world and to specify its size, and Edit World gives you a chance to change the
configuration of the current world.

When you click on the Edit World button, the control panel changes to present a tool menu
that looks like the picture on the next page:

 – 8 –

This menu of tools gives you everything you need to create a new world. The tools

allow you to create and remove walls. The dark square shows that the Draw Wall tool is
currently selected. If you go to the map and click on the spaces between corners, walls
will be created in those spaces. If you later need to remove those walls, you can click on
the Erase Wall tool and then go back to the map to eliminate the unwanted walls.

The five beeper tools

allow you to change the configuration of beepers on any of the corners. If you select the
appropriate beeper tool and then click on a corner, you change the number of beepers
stored there. If you select one of these tools and then click on the beeper-bag icon in the
tool area, you can adjust the number of beepers in Karel’s bag.

If you need to move Karel to a new starting position, click on Karel and drag it to some
new location in the map. You can change Karel’s orientation by clicking on one of the
four Karel direction icons in the tool area. If you want to put beepers down on the corner
where Karel is standing, you have to first move Karel to a different corner, adjust the
beeper count, and then move Karel back.

These tools should be sufficient for you to create any world you’d like, up to the
maximum world size of 50x50. Enjoy!

