
Admin
Today’s topics
• Sorting, sorting, and more sorting!

Reading
• Ch 7

Midterm next Tuesday evening
• Terman Aud 7-9pm

Boggle and late days

Lecture #15

Selection sort code
void SelectionSort(Vector<int> &v)

{

 for (int i = 0; i < v.size()-1; i++) {

 int minIndex = i; // find index of min in range i to end

 for (int j = i+1; j < v.size(); j++) {

 if (v[j] < v[minIndex])

 minIndex = j;

 }

 Swap(v[i], v[minIndex]); // swap min to front

 }

Selection sort analysis
Count work inside loops
• First iteration does N-1 compares, second does N-2, and so on

• one swap per iteration

N-1 + N-2 + N-3 + … + 3 + 2 + 1
"Gaussian sum"

Add sum to self

 N-1 + N-2 + N-3 + … + 3 + 2 + 1

 + 1 + 2 + 3 + …. + N-2 + N-1

= N + N + N + …. + N + N

= (N-1)N

Sum = 1/2 * (N-1)N = O(N2)

Insertion sort algorithm
How you might sort hand of just-dealt cards…
• Each subsequent element inserted into proper place

• Start with first element (already sorted)

• Insert next element relative to first

• Repeat for third, fourth, etc.

• Slide elements over to make space during insert

Insertion sort code
void InsertionSort(Vector<int> &v)

{

 for (int i = 1; i < v.size(); i++) {

 int cur = v[i]; // slide cur down into position to left

 for (int j=i-1; j >= 0 && v[j] > cur; j--)

 v[j+1] = v[j];

 v[j+1] = cur;

 }

}

Insertion sort analysis
Count work inside loops
• First time inner loop does 1 compare/move

• Second iteration does <= 2 compare/move, third <= 3, and so on

• Last iteration potentially N-1 comparisons

Cases
• What is best case? Worst case?

• Average (expected) case?

Insertion vs Selection
Big O?

Mix of operations?
• Number of comparisons vs moves

Best/worst inputs?

Ease of coding?

Why do we need multiple algorithms?

Quadratic growth
In clock time
• 10,000 3 sec

• 20,000 13 sec

• 50,000 77 sec

• 100,000 5 min

Double input -> 4X time
• Feasible for small inputs, quickly unmanagable

Halve input -> 1/4 time
• Hmm… can recursion save the day?

• If have two sorted halves, how to produce sorted full result?

Mergesort idea
"Divide and conquer" algorithm
• Divide input in half

• Recursively sort each half

• Merge two halves together

"Easy-split hard-join"
• No complex decision about which goes where, just divide in middle

• Merge step preserves ordering from each half

Merge sort code
void MergeSort(Vector<int> &v)

{

 if (v.size() > 1) {

 int n1 = v.size()/2;

 int n2 = v.size() - n1;

 Vector<int> left = Copy(v, 0, n1);

 Vector<int> right = Copy(v, n1, n2);

 MergeSort(left);

 MergeSort(right);

 Merge(v, left, right);

 }

}

O(1)

O(N)

O(N)

T(N) = N + 2T(N/2)

Mergesort analysis
MS(N)

...

= N

MS(N/2) MS(N/2)

N/4 N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8

= N/2 + N/2

= 4*N/4

= 8*N/8

Each level
contributes N

Mergesort analysis
MS(N)

MS(N/2) MS(N/2)

N/4 N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8

K levels

…

N/2K

 N/2K = 1

 N = 2K

log N = K

log N levels * N per level= O(NlogN)

Quadratic vs linearithmic
Compare SelectionSort to MergeSort
• 10,000 3 sec .05 sec

• 20,000 13 sec .15 sec

• 50,000 78 sec .38 sec

• 100,000 5 min .81 sec

• 200,000 20 min 1.7 sec

• 1,000,000 8 hrs (est) 9 sec

O(NlogN) is pretty good, can we do better?
• Theoretical result (beyond scope of 106B) no general sort algorithm

better than NlogN

• But a better NlogN in practice?

Quicksort idea
"Divide and conquer" algorithm
• Divide input into low half and high half

• Recursively sort each half

• Join two halves together

"Hard-split easy-join"
• Each element examined and placed in correct half

• Join step is trivial

