
Admin
Today’s topics
• Recursive backtracking

Reading
• Reader ch. 6 (today)

• Next: pointers! 2.2-2.3, linked lists 9.5(sort of)

Terman cafe after class

Lecture #10

Refresh: permute code
void RecPermute(string soFar, string rest)
{
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string next = soFar + rest[i];
 string remaining = rest.substr(0, i)
 + rest.substr(i+1);
 RecPermute(next, remaining);
 }
 }
}

 // "wrapper" function
void ListPermutations(string s)
{
 RecPermute("", s);
}

Tree of recursive calls

 P("ac","bd")

Permute("", "abcd")

P("b","acd") P("c","abd") P("d","abc")

P("abc","d")

P("abcd","")

P("a","bcd")

P("ab","cd")

P("abd","c")

P("abdc","")

P("ad","bc")

P("acb","d")

P("acbd","")

P("acd","b")

P("acdb","")

Subsets
Enumerate all subsets of input
• "abc" has subsets "a", "b", "ab", "ac", …

• Order doesn't matter, "ab" is same as "ba"

Solving recursively
• Separate one element from input

• Can either include in current subset or not

• Recursively form subsets including it

• Recursively form subsets not including it

• What is the base case?

Remind you of any other problem you've seen?
• Same patterns often resurface!

Subset strategy
Result is empty, starting input is "abcd"

Consider first element: "a"

Add to subset, remaining input is "bcd"

Recursively find all subsets from here

Repeat recursion without including "a"

Subsets code
void RecSubsets(string soFar, string rest)
{
 if (rest == "")
 cout << soFar << endl;
 else {
 // add to subset, remove from rest, recur
 RecSubsets(soFar + rest[0], rest.substr(1));
 // don't add to subset, remove from rest,recur
 RecSubsets(soFar, rest.substr(1));
 }
}

void ListSubsets(string str)
{
 RecSubsets("", str);
}

Tree of recursive calls
Subsets("", "abcd")

S("a","bcd")

S("ab","cd")

S("abc","d")

abcd

S("ab","d")

abc ababd ad a

S("","bcd")

S("a","cd")

S("ac","d") S("a","d")

acacd

Exhaustive recursion
Permutations/subsets are about choice
• Both have deep/wide tree of recursive calls

• Depth represents total number of decisions made

• Width of branching represents number of available options per
decision

Exhaustive recursion is, well, exhaustive
• Explores every possible option at every decision point

• Typically very expensive

• N! permutations, 2N subsets

• (Recursion isn't the problem, there just is a huge space to explore)

Consider partial exploration of exhaustive space
• Similar exhaustive structure, but stop at first "satisfactory" outcome

Recursive backtracking
Cast problem in terms of decision points
• Identify what decisions need to be made

• Identify what options are available for each decision

• A recursive call makes one decision, and recurs on remaining decisions

Backtracking approach
• Design recursion function to return success/failure

• At each call, choose one option and go with it

• Recursively proceed and see what happens

• If it works out, great, otherwise unmake choice and try again

• If no option worked, return fail result which triggers backtracking (i.e.
un-making earlier decisions)

Heuristics may help efficiency
• Eliminate dead ends early by pruning

• Pursue most likely choice(s) first

Backtracking pseudocode

bool Solve(configuration conf)
{
 if (no more choices) // BASE CASE
 return (conf is goal state);

 for (all available choices) {
 try one choice c;
 // solve from here, if works out, you're done
 if (Solve(conf with choice c made)) return true;
 unmake choice c;
 }

 return false; // tried all choices, no soln found
}

Permute -> anagram finder

bool IsAnagram(string soFar, string rest, Lexicon &lex)
{
 if (rest == "") {
 return lex.containsWord(soFar);
 } else {
 for (int i = 0; i < rest.length(); i++) {
 if (IsAnagram(soFar+rest[i], rest.substr(0,i)+rest.substr(i+1), lex))

 return true;
 }
 }
 return false;
}

void RecPermute(string soFar, string rest)
{
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 RecPermute(soFar+rest[i], rest.substr(0,i)+rest.substr(i+1));
 }
 }
}

8 Queens
Goal: place N queens on board so none threatened
• Queen can attack in any straight line (horizontally, vertically, diagonally)

Cast as in terms of decision
• Each call will make one decision and recur on rest

• How many decisions do you have to make?

• What options do you have for each?

Q

Q

N queens code
bool Solve(Grid<bool> &board, int col)
{
 if (col >= board.numCols()) return true; // base case

 for (int rowToTry=0; rowToTry<board.numRows(); rowToTry++) {
 if (IsSafe(board,rowToTry,col)) {
 PlaceQueen(board, rowToTry, col);
 if (Solve(board, col + 1)) return true;
 RemoveQueen(board, rowToTry, col);
 }
 }
 return false;
}

