
Admin
Assign 2 due today, Assign 3 out
• Joy poll

Today’s topics
• Procedural recursion

Reading
• Reader ch. 5-6 (today, next)

Lecture #9

Thinking recursively
Recursive decomposition is the hard part
• Find recursive sub-structure

• Solve problem using result from smaller subproblem(s)

• Identify base case

• Simplest possible case, directly solvable, recursion advances to it

Common patterns
• Handle first and/or last, recur on remaining

• Divide in half, recur on one/both halves

• Make a choice among options, recur on updated state

Placement of recursive call(s)
• Recur-then-process versus process-then-recur

Procedural vs functional
Functional recursion
• Function returns result

• Computers using result from recursive call(s)

Procedural recursion
• No return value (function returns void)

• Task accomplished during recursive calls

Example: drawing fractal
• Self-similar structure

• Repeats itself within

• Outer fractal makes recursive call to draw inner fractal(s)

A familiar fractal
void DrawFractal (double x, double y, double w, double h)
{
 DrawTriangle(x, y, w, h);
 if (w < .2 || h < .2) return;
 double halfH = h/2;
 double halfW = w/2;
 DrawFractal(x, y, halfW, halfH); // left
 DrawFractal(x + halfW/2, y + halfH, halfW, halfH); // top
 DrawFractal(x + halfW, y, halfW, halfH); // right
}

Recursive art
Piet Mondrian
• Dutch painter, 1872-1944

• cubism, neoplasticism

I believe it is possible that, through horizontal and vertical lines constructed with
awareness, but not with calculation, led by high intuition, and brought to harmony and
rhythm, these basic forms of beauty, supplemented if necessary by other direct lines
or curves, can become a work of art, as strong as it is true."

Random pseudo-Mondrian
Choose one of three options
• Divide canvas horizontally

• Divide canvas vertically

• Do nothing

Dividing produces two smaller canvases
• That can also be recursively painted in Mondrian style

Base case stops at too-small canvas

Mondrian code
void DrawMondrian(double x, double y, double w, double h)
{
 if (w < 1 || h < 1) return; // base case

 FillRectangle(x, y, w, h, RandomColor()); // fill background

 switch (RandomInteger(0, 2)) {
 case 0: // do nothing
 break;
 case 1: // bisect vertically
 double midX = RandomReal(0,w);
 DrawBlackLine(x+midX, y, h);
 DrawMondrian(x, y, midX, h);
 DrawMondrian(x+midX, y, w-midX, h);
 break;
 case 2: // bisect horizontally
 double midY = RandomReal(0, h);
 DrawBlackLine(x, y+midY, w);
 DrawMondrian(x, y, w, midY);
 DrawMondrian(x, y + midY, w, h-midY);
 break;
 }
}

Towers
Set of graduated disks stacked on a spindle

Goal is move tower from source to destination

Rules
• All disks on a spindle (when not actively being moved)

• Have one spare spindle

• Can move only one disk at a time

• Can only place disk on top of larger disk

A B C

Tower recursion
Move tower of height N from A to B, using C
• Starting thought: divide the tower

• What is smaller instance of similar problem that helps?

• Divide N height tower into one disk and tower of height n-1?

• Which one to separate? Top or bottom disk?

• What do you do with other tower?

Tower code
void MoveTower(int n, char src, char dst, char tmp)
{
 if (n > 0) {
 MoveTower(n-1, src, tmp, dst);
 MoveSingleDisk(src, dst);
 MoveTower(n-1, tmp, dst, src);
 }
}

Permutations
Want to enumerate all rearrangements:
• ABCD permutes to DCBA, CABD, etc.

Solving recursively
• Choose a letter from input to append to output

• Recursively permute remaining letters onto output

• What other options do you need to explore?

• How to ensure each letter is used exactly once?

• What is the base case?

Permute strategy
Result is empty, starting input is "abcd"

Choose a letter to be first, say "a"

Result so far is "a", remaining input is "bcd"

Recursively permute to get all "bcd" combos

After finishing permutations with "a" in front, need
to go again with "b" in front and then "c" and so on

Permute code
void RecPermute(string soFar, string rest)
{
 if (rest == "") {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < rest.length(); i++) {
 string next = soFar + rest[i];
 string remaining = rest.substr(0, i)
 + rest.substr(i+1);
 RecPermute(next, remaining);
 }
 }
}

 // "wrapper" function
void ListPermutations(string s)
{
 RecPermute("", s);
}

Tree of recursive calls

 P("ac","bd")

Permute("", "abcd")

P("b","acd") P("c","abd") P("d","abc")

P("abc","d")

P("abcd","")

P("a","bcd")

P("ab","cd")

P("abd","c")

P("abdc","")

P("ad","bc")

P("acb","d")

P("acbd","")

P("acd","b")

P("acdb","")

