
CS106B Handout #32
J Zelenski Feb 25, 2008

Assignment #6: Priority Queue

Due: Wed Mar 5th 2:15pm
For this assignment, you will be implementing a class of your own: a priority queue, which is a
variation on the standard queue. The standard queue processes element in the first-in, first-out
("FIFO") manner typical of ordinary waiting lines. Queues can be handy, but a FIFO strategy isn't
always what's needed. A hospital emergency room, for example, needs to schedule patients according
to priority. A patient with a more critical problem will pre-empt others even if they have been waiting
longer. This is a priority queue, where elements are prioritized relative to each other and when asked
to dequeue one, it is the highest priority element in the queue that is removed. There are many
practice uses for a priority queue.

The main focus of this assignment is to implement a priority queue class in several different ways.
You'll have a chance to experiment with arrays, linked lists, and a special kind of tree called a heap.
Once you have debugged your implementations, you will run some tests and consider the strengths
and weaknesses of the various versions. We provide client code that tests and times the performance
of the class, your role will be to act as the implementer only.

The interface
Ideally the priority queue would be written as a template class. However, given this is your first class
implementation project, we're going to hold off on making it fully generic and instead use integer
elements. This priority queue will store a collection of integers, where the integer itself is used as the
priority. Larger integers are considered higher priority than smaller ones and are dequeued ahead of
smaller values. Here is the basic priority queue interface:

class PQueue
{
 public:

PQueue();
~PQueue();
int size();
bool isEmpty();
void enqueue(int newElem);
int dequeueMax();

};

Note the priority queue interface is quite similar to that of the ordinary queue. For the detailed
specification of the behavior and usage of these functions, see the pqueue.h interface file included in
the starter files. Just six member functions, how hard can that be? :-)

Implementing the priority queue
A priority queue can be implementing using a variety of data structures, each with different tradeoffs
between memory required, runtime performance, complexity of code, etc. In this assignment, you will
consider four different implementations. One implementation stores the queue elements in an
unsorted vector. The second represents the priority queue as a sorted linked list. The third is a hybrid
cross between an array and a linked list, a chunklist. The last represents the priority queue as
specially-ordered binary tree called a heap (not to be confused with the heap where memory is
dynamically allocated by new). The first two implementations are provided to you pre-written, the last
two will be yours to write.

Unsorted vector implementation
The unsorted vector implementation is given to you. You do not have to write any code for this
implementation, just go over and be familiar with the code provided. This implementation is layered
on top of our Vector class. Its enqueue strategy is trivial, it simply adds the new element to the end.
When it comes time to dequeue, it uses a linear search to find the maximum. You will run time trials
and analyze its strengths and weaknesses.

Sorted linked list implementation
The sorted linked list implementation is also given to you. The singly-linked list is ordered by
decreasing priority so as to facilitate retrieving the largest element. This arrangement makes dequeue
easy, but enqueue has to search for the proper position to insert a new value. Running time trials on
this implementation will show how those tradeoffs are reflected in runtime performance.

Sorted chunklist implementation
Now it's your turn! Neither the vector nor the linked list is a great performer on all operations so
next you'll concoct an array/linked-list combo to see what advantages a hybrid might offer. You take
advantage of the flexibility offered by a linked list but reduce some of the memory overhead and
slow traversal time by making each cell not a single element, but a block of elements. The chunklist
combines the array and linked-list concepts into a singly-linked list of blocks, where each block
contains a constant-sized array capable of holding several elements.

By storing several elements in each block, you reduce the storage overhead because the pointers take
up a smaller fraction of the data. However, because the blocks are of a fixed maximum size,
inserting an element into a block never requires shifting more than k elements, where k is the block
size or maximum number of elements per block. The time it takes to find the right block in which to
insert a new element is also reduced by the added ability to step over entire blocks of elements, rather
than examining each element one by one. The elements are still kept in reverse-sorted order, to
facilitate an easy dequeue operation.

To get a better idea of how this new pqueue representation works, consider the diagram below for a
pqueue with a block size of 4. Because the blocks need not be full, there are many possible
representations for the same contents. A pqueue containing 29, 22, 17, 14, 14 and 5 might be divided
into three blocks, as follows:

Suppose that you want to enqueue 16 and 15. Enqueuing a 16 is a relatively simple matter because
the appropriate block has only three elements, leaving room for a new one. You shift the two 14's
toward the end of the block, but do not need to make changes to the pointers linking the blocks. The
configuration after inserting the 16 therefore looks like this:

If you now try to enqueue a 15, however, the problem becomes more complicated because the
appropriate block is full. To make room for the 15, you need to add a new block. A simple strategy
is to split the current block in two, putting half of the elements into each block. After splitting (but
before inserting the 15), the pqueue looks like this:

-2-

After splitting, you can now easily insert 15:

Your job is to implement the priority queue as a chunklist. Here are some ground rules:

• Each list cell stores a constant-sized array. This array must be represented as a raw C++ array,
not a Vector. The block size should be specified with a MaxElemsPerBlock constant and it
should be possible to change that value to experiment with the different tradeoffs. Each block will
also need to keep track of which slots are used within the block and maintain a pointer to the next
block in the list.

• You must implement a sorted list of blocks but the data structure decisions beyond that are yours
to make (is the list doubly-linked, does it have a dummy cell, it is circular, does you need a cursor,
etc.). Think carefully about what is needed to support the operations efficiently. Avoid
redundancy and complication, especially where it provides no benefit. Make sure that you have a
clear understanding of how your data structure works before you start writing the code. Draw
pictures. Figure out what the empty pqueue looks like. Consider carefully how the data
structures change as blocks are split.

• If you have to enqueue an element into a block that is full, you should adopt the strategy described
above and divide the full block in half before making the insertion. This policy helps ensure that
neither of the two resulting blocks starts out being filled, which might immediately require another
split when the next element comes along.

• There are situations where there is more than one appropriate place for an element, such as a value
that could either be added to the end of one block or the beginning of the next. It is up to you to
detect and decide how to best handle such a situation, but we recommend that you work toward
designing a consistent, understandable strategy. In general, it will help a great deal if you try to
simplify your design and avoid introducing lots of special case handling.

• Dequeuing an element means removing the first element in the first block. You can decide whether
it makes sense to shuffle down the elements in the rest of the block or use some technique to
know what contents the block has. If you delete the last element in a block, your program should
free the storage associated with that block.

Heap implementation
Although the binary search trees we will discuss from Chapter 13 might make a good
implementation of a priority queue, there is another type of binary tree that is an even better choice in
this case. A heap is a binary tree that has these two properties:

• It is a complete binary tree, i.e. one that is full in all levels (all nodes have two children), except
for possibly the bottom-most level which is filled in from left to right with no gaps.

• The value of each node is greater than or equal to the value of its children.

-3-

Here's a conceptual picture of a small heap:

30

20

20

6 4 17

21

3 5

35

Root node

Last node

Note that a heap differs from a binary search tree in two significant ways. First, while a binary search
tree keeps all the nodes in a sorted arrangement, a heap is ordered in a much weaker sense.
Conveniently, the manner in which a heap is ordered is actually sufficient for the efficient
performance of the priority queue operations. The second important difference is that while binary
search trees come in many different shapes, a heap must be a complete binary tree, which means that
every heap containing ten elements is the same shape as every other heap of ten elements.

Representing a heap using an array
One way to manage a heap would be to use the standard binary tree node definition and wire up left
and right children pointers to all nodes. However, we can exploit the completeness of the tree and
create a simple array representation and avoid the complexity and space overhead of pointers.
Consider the nodes in the heap to be numbered level-by-level like this:

30

20

20

4 176

3

35

21

5

1

2

8

7654

3

9 10

and see out this array representation corresponds to the same heap:

3 5 2 1 3 0 2 0 6 4 1 7 2 0 3 5
1 2 3 4 5 6 7 8 9 10

If you number the nodes starting from 1, you can divide any node number by 2 (discarding the
remainder) to get the node number of its parent. For example, the parent of node 11 is node 5. The
two children of node i are 2i and 2i + 1, e.g. node 3's two children are 6 and 7. (Alternatively, you
can number nodes from starting from 0 and use slightly different math to move from parent to child
and back.) Although many of the drawings in this handout use a tree diagram for the heap, keep in
mind you will actually be storing the heap in its flattened array form.

Heap insert
Inserting into a heap is done differently than its functional counterpart in a binary search tree. A new
element is added to the bottom of the heap and it rises up to its proper place. For example, consider
inserting 25 into the heap shown above. Add a new node with value 25 at the bottom of the heap (the
next position to add is dictated by the completeness property):

-4-

30

20

20

6 4 17

21

3 5

35

25

35 21 30 20 6 4 17 20 3 5 25

Compare the value in this new node with the value of its parent and, if necessary, exchange them.
Since the heap is stored in array, you can move the nodes merely by swapping the values in the
array. From there, compare the moved value to its new parent and continue moving the value upward
until it needs to go no further. This is sometimes called the bubble-up operation.

30

20

20

4 17

21

3 5

35

25

6

30

20

20

4 1721

3 5

35

25

6

35 21 30 20 25 4 17 20 3 5 6 35 25 30 20 21 4 17 20 3 5 6

Heap remove
Where is the largest value in the heap? Given heap ordering, the largest value is in the root, where it
can be easily accessed. However, after removing this value, you must re-configure the remaining
nodes back into a heap. Remember the completeness property dictates the shape of the heap, and
thus it is the last node on the bottom level that has to go. Rather than re-arranging to fill in the gap
left by the root node, leave the root node where it is, copy the value from the last node to the root
node, and remove the last node.

30

20

20

4 1721

3 5

25

6

6 25 30 20 21 4 17 20 3 5

At this point, you have a complete binary tree again, whose left and right subtrees are heaps. The
only problem is that the value in the root may be (and usually is) out of place. In order to restore the
heap ordering property, you must trickle that value down to the right place. Use an inverse to the
strategy used to float up the new value during the enqueue operation. Start by comparing the value
in the root to the values of its two children. If the root's value is smaller than the values of either
child, swap the value in the root with that of the larger child:

-5-

20

20

4 1721

3 5

25 6

30

30 25 6 20 21 4 17 20 3 5

This fixes the heap ordering property for the root node, but at the expense of potentially tweaking the
child that was exchanged. The child is another subheap where only the root node is out of order so
apply the same re-ordering to fix it up and so-on down through as needed.

20

20

4

17

21

3 5

25

6

30

30 25 17 20 21 4 6 20 3 5

You stop trickling downwards when the value sinks to a level such that it is greater than both of its
children or it has no children at all. This recursive action of moving the out-of-place root value down
to its proper place is often called heapify-ing.

Your job is to implement the priority queue as a heap. Here are some ground rules:

• There should be no upper bound on the size of your heap, which means it must dynamically grow
as needed. You can implement using a raw C++ array or layer on top of a Vector, it's your choice
whether you'd like practice managing dynamic memory or accept the convenience of Vector
despite its performance implications (i.e. bounds checking every access).

• Depending on how you map from node to array index (i.e. using 0 or 1-based numbering), you
may have an empty slot at the beginning to take into account and/or require some adjustments in
the arithmetic for computing the conversion from child indexes to parent and back.

Solution strategies
Our suggested lists of tasks to tackle for this assignment:

Task 1— Unsorted vector and sorted linked list
Read through the code in the provided vector and linked list implementations to see how they are
implemented. Set up the project to use vector, run our time trial program, observe behavior and
record performance in the worksheet. Swap our vector for list and repeat the experiements.

Task 2 — Sorted chunklist
Now you will get a chance to write your own implementation. Design your data structure and plot
out your strategy. You might find it useful to start with our singly-linked list implementation since
some of its structure is similar. The chunklist can be tricky, especially in dealing with the boundary
conditions so it helps to do some thinking on paper, drawing things out and so on before diving into
the code. Work on one function at a time and don't be shy about using the debugger/cout/test code to
verify as you develop. You can also test your implementation using our provided client code, but you
may want to write more simple tests of your own. Once you have it working correctly, run our time
trial routines to test the performance of the chunklist implementation and record the results.

-6-

Task 3 — Heap
Move the skip list implementation aside and start on the heap implementation. As always, think
before you code. Be sure you understand the heap structure and the transformations required for
insert and remove. Implement carefully, using a one-function-at-a-time test-as-you-go strategy.
When all works perfectly, run the time trials and record the results.

Task 4 — Answer summary questions
As you have seen, there are many different data structures, you could choose to represent and
manipulate a priority queue, each involving tradeoffs between amount of memory required, speed of
operations, difficulty of writing and maintaining the code, and so on.

For each of the implementations (the two we provided and the two additional ones you wrote), use
the performance trial option available to observe and record the performance of each implementation
in the worksheet. Answer the thought questions at the end of the worksheet to explore issues of
time/space tradeoffs and summarize the results of your experiments.

Requirements and suggestions
• Project logistics. Your project should contain the .cpp files for our client test code as well as the
pq<version>.cpp for the particular implementation you are actively working on. When you
want to change implementations, remove any existing pqueue implementation file from the
project and add the one for the version you wish to use. You must also edit the private section of
the pqueue.h class interface to declare the data members and private member functions to match
the implementation you are using. Our versions contain the necessary private declarations in a
comment at the top of the .cpp file so you can copy and paste them into the header file.

• Timing data. As you've probably already realized from your earlier work with timing, the system
clock data can be distorted by various artifacts, so you should run your experiments several
times, throw away any outliers, and average to get a reliable result. If you've run many trials and
your numbers are consistently off from the predicted big-O, it may indicate that you are
mistaken about the big-O or have some lurking problems in your implementation. Consider it an
opportunity for further investigation!

• Managing memory. You are responsible for freeing heap-allocated memory. Your
implementation should not orphan any memory during its operations and the destructor should
free all of the memory for the object. We recommend getting the entire program working without
deleting anything, and then go back and carefully add deallocation. For those classes that store
pointers, use the DISALLOW_COPYING macro in the private section to disallow the default
memberwise copying and avoid bugs from unintended sharing.

• Think before you code. The amount of code necessary for the assignment is not large (about 100
lines for each class), but you will find it requires careful thinking to get correct. It helps to sketch
things on paper and work through the boundary cases carefully before you write any code.

• Debug as you develop. Don't implement all of the member functions and try to test the entire
class at once! Instead, work on one operation and test thoroughly before moving on. Our
printDebuggingInfo hook can be used to dump the internal structure for you to examine. For
example, after finishing writing enqueue, add test code that makes a single enqueue and prints
the debugging info to see how it went. If all is well, add more enqueues with debug printing in
between, and observe how the pqueue grows. Don't move on until enqueue is working correctly
in all necessary cases. When writing dequeue, proceed in the same fashion.

• Test thoroughly. I know we already said this, but it never hurts to repeat it a few times. The code
you write has some complex interactions and it is essential that you take time to identify and test
all the various cases. Our test code will be helpful, but no doubt you will want to augment it with
tests of your own.

-7-

Possible extensions
Never one to turn down a student who is seeking some opportunities to go further, I thought I'd
share some thoughts on possible additional explorations into priority queues.

• Add a merge operation. One additional feature often needed when working with priority
queues is the ability to merge two priority queues into one combined result. Extend your
PQueue classes to support such a merge member function. A rather uninspired way to do this
is to add a loop that dequeues from one and enqueues to another, but ideally, merging should
take advantage of the internal implementation to operate efficiently. Add timing trials for this
operation and report what efficiency you can achieve for merge operation for each of the
different implementations.

• A double-ended priority queue supports both dequeueMin and dequeueMax operations.
Extend your implementation(s) to add this facility. Which implementations can be adapted to
provide to efficient access to both the min and max value?

• Research and implement an alternative priority queue implementation. One of the reasons I
love priority queues is because that are so many possible implementation strategies, each with
different strengths and weaknesses. Here are a few other data structures you might research (in
alphabetical order): binomial heaps, calendar queues, d-ary heaps, Fibonacci heaps, fishspears,
leftist heaps, pairing heaps, skew heaps, skip lists, and weak heaps (and there are many
others!). Or might any of our CS106 classes be used to implement a priority queue? Code up
one of these alternatives and add its information into your report.

• Write some interesting client code uses a priority queue. Priority queues can be incredibly
useful in a wide variety of situations. One common use is for priority-driven algorithms, such
as a heuristically-guided search or approximation algorithm that needs to efficiently access the
most likely (highest priority) alternative to explore next. You will likely need to first generalize
your class into template form (since storing only integers isn't likely to get you very far in
terms of client code).

Accessing files
On the class web site, there are two folders of starter files: one for Mac Xcode and one for Visual
Studio. Each folder contains these files:

main.cpp Main program
performance.h/cpp Module with performance time trial functions
pqueuetest.h/.cpp Module with simple pqueue test functions
pqueue.h Interface for the PQueue class
pqvector.cpp Unsorted vector implementation of the PQueue class
pqlist.cpp Singly-linked list implementation of the PQueue class
vector.h Special version of Vector template class with additional member

function to calculate memory usage (keep in project folder)

To get started, create your own starter project and add the three client files as well as the desired
pqueue implementation .cpp file.

Deliverables
As always, you are to submit both a printed version of your code in lecture, as well as an electronic
version via ftp. Both are due before the beginning of lecture. You should submit the source for the
two implementations you wrote and include the completed worksheet from the next page and the
answers to the thought questions. Please firmly staple all the pages and mark it clearly with your
name and your section leader's name.

Today's thought on testing: "A good programmer is someone who looks both ways before crossing a one-way street." — Doug Linder

-8-

http://see.stanford.edu/see/materials/icspacs106b/assignments.aspxhttp://see.stanford.edu/see/materials/icspacs106b/assignments.aspx

Summarize your implementation results in this worksheet. Fast operations may not even register as
taking any time at all given the coarse granularity of the system clock, but slower operations should
register as you increase the pqueue size. Run the performance trial on three different sizes—e.g.
choose N = 10000 and record times for 10000, 20000, and 50000. You may have to use a larger
value of N if your computer isn't as ancient as mine. Record the time reported for the given
operations and memory used. Analyze your algorithms and determine the big-O analysis of the
worst case performance of each operation as a function of N, the number of elements in the pqueue.

Vector Single-link Chunklist Heap

Memory Used N

Memory Used 2N

Memory Used 5N

Enqueue N

Enqueue 2N

Enqueue 5N

Enqueue Big-O

DequeueMax N

DequeueMax 2N

DequeueMax 5N

DequeueMax Big-O

PQSort N (random)

PQSort 2N

PQSort 5N

PQSort Big-O

PQSort N (sorted & reverse)

PSort 2N

PQSort 5N

PQSort Big-O

-9-

Thought Questions (to be answered and handed in with assignment)
Take the time to answer the following thought questions about your experiment. We're not looking for long involved
essays here, just a chance for you to show us that you have thought about the issues involved. A few sentences would
be just fine.

1) Do the observed times match your big-O analysis—do functions reported to work in constant
time stay fairly constant when the pqueue size grows? Do linear functions double with the
pqueue size? Can you explain any big discrepancies? What effect can you see of those constant
factors discarded in the big-O? Do functions that have the same complexity take the same time,
i.e. if operations A and B are both O(n) do they take the same amount of time (should they?)

2) Repeat the performance trials for the chunklist changing the MaxElemsPerBlock constant to
smaller and larger numbers. What does this tell you about the relationship between bloxk size
and memory use and speed? What appears to be a fairly optimal range for the bock size if the
pqueue holds 2000 elements? What about 10000 or 20000?

3) The priority queue interface might stipulate that elements with equal priority should be
processed in FIFO order. This doesn't much matter for a priority queue storing integers (where
the particular value of 4 being dequeued is indistinguishable from any other 4 in the pqueue) but
is important for handling ER triage where three patients suffering from the same shortness of
breath should be seen in order of arrival. Of the four implementations you wrote, which of them
guarantee FIFO processing for equal priority elements? Explain your reasoning. For those
implementations that don't, how might you adjust the code to meet this requirement?

4) In order to streamline the performance of a very common operation, many times you have to
sacrifice the performance of some other, hopefully less frequently used operations. Would it be
better to optimize enqueue at the expense of dequeueMax or vice versa in the priority queue?

5) What is the primary strength and weakness of each implementation? Which seems the most
appealing if your goal was sheer speed? What if you wanted to use as little space as possible?
What if you needed to get the code written and debugged in the shortest amount of time?

-10-

