
CS106B Handout #22
Winter 07-08 February 11, 2008

Section Handout #5

Problem 1: Big-O
For each of the following functions, determine its computational complexity expressed in
Big-O notation. Briefly justify your answer.

a)
int Mystery1 (int n)
{

 int sum = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < i; j++)
 {
 sum += i * j;
 }
 }
 return (sum);

}

b)
int Mystery2 (int n)
{

 int sum = 0;
 for (int i = 0; i < 10; i++)
 {
 for (int j = 0; j < i; j++)
 {
 sum += j * n;
 }
 }
 return (sum);

}

c)
int Mystery3 (int n)
{

 if(n <= 1) return 1;
 return (Mystery3(n / 2) + 1);

}

d) Determine the complexity of function Mystery4:

int Mystery4(int n)
{

 return Pinky(0, n);
}

int Mystery5(int a, int b)
{

 if (a == b)

 {
 return 0;
 }
 else
 {
 return Pinky(a+1, b) + Pinky(a, b-1);
 }

}

Problem 2: Searching and Sorting
You have a data set of size n that's currently unsorted. You're trying to decide whether it
will be worthwhile to sort the data before performing repeated searches, to take
advantage of binary search. If you use selection sort to sort the data, how many binary
searches would you need to perform to "buy back" the cost that went into sorting your
data if:

a.) n is equal to 16 (24)
b.) n is equal to 1024 (210)

What if you use merge sort instead of selection sort?

Problem 3: Those Big-O Constant Factors
The formal definition of big-O states that a function t(N) is big-O of f(N) if there exists a
constant N0 and a positive constant C, such that for every value of N ≥ N0, t(N) ≤ C *
f(N). Big-O analysis helps us to reason about the runtime of an algorithm as the input
size grows, but sometimes, due to these constant factors, a function that has a worse big-
O runtime can outperform one with a better big-O runtime. This question hopes to show
some of these issues.

Say you are trying to choose whether to use selection sort or merge sort to sort some
amount of data. As we saw in class, selection sort has a runtime of O(N2) while merge
sort has a runtime of O(N log N). However, because merge sort requires us to create
temporary data structures to copy values in to and out of during the sorting, merge sort
has higher constant factors than selection sort and for certain input sizes these can
outweigh the advantage of being N log N rather than N2. Assume selection sort has a
constant factor of 10 (that is, the time to run selection sort is less than or equal to 10 * N2)
and assume merge sort has a constant factor of 100.

a.) Which algorithm would you choose if you needed to sort 50 items?
b.) Which algorithm would you choose if you needed to sort 100 items?

Based on the above, if you were writing a sorting function and could only use merge sort
or selection sort (or a hybrid approach), what would you do to make it as fast as possible?

Problem 4: Search Algorithms
For Assignment 2, you implemented a breadth-first search algorithm for maze solving.
To refresh your memory, breadth-first search examines possibilities in order of their

distance from the start point. In this case, that means it examines paths in order of their
length. An alternative search method is depth-first search, where each path is explored
fully before another is attempted. When a solution is found, it is immediately returned.
An example implementation of this search method for the maze problem can be found in
chapter 6.

Compare and contrast the two search methods as applied to the problem of solving a (not
necessarily perfect) maze. Is one faster than the other? Does one use more memory?
What are their Big O values based on the maze dimensions, l and w (remember that Big
O bounds the worst case)? Do the two algorithms necessarily return the same paths? If
the two algorithms sometimes return different paths, sketch an example maze where they
return different paths.

Problem 5: Algorithmic Problem Solving
(Adapted from a problem from Programming Pearls, by Jon Bentley)
Suppose that you have a Vector of integers and you would like to find the maximum sum
of any its subvectors (a subvector is some contiguous set of numbers in the Vector). That
is, you want to figure out what is the maximum sum you can get using a sequence of
consecutive numbers from the Vector. Note that since the numbers can be positive or
negative, this is not simply the entire Vector. For example, if the Vector contained [2, -5,
12, 9, -3, 10], the largest sum is found in the subvector [12, 9, -3, 10] for a total sum of
28. There are a number of different ways to solve this problem of different computational
complexities.

a) Using pseudocode, describe an O(N^3) algorithm that works by summing every
subvector to identify and return the maximum sum.

b) Summing each subvector does a lot of redundant work. For example, if your Vector
contains [2, -5, 12, 9, -3, 10], the subvectors [-5, 12] and [-5, 12, 9, -3] both require
summing -5 and 12. How can you change the algorithm from part a to reuse
computation rather than repeating it? Describe the new version of the algorithm using
pseudocode. The resulting algorithm should be O(N^2)

c) Now consider solving the problem using a divide-and-conquer approach that divides
the vector into two halves to be handled recursively. How are result(s) from each half
combined to solve the larger problem? What is the base case for this algorithm? You
should describe the algorithm using pseudocode. The algorithm should run in O(NlogN)
time.

d) While the previous algorithm is pretty good, there is an extremely clever way to solve
the problem which only uses O(N) time. This means it only examines each element in the
vector some constant number of times, in this case one time. Describe this algorithm
using pseudocode. As a hint, consider the following case: suppose you have determined
what is the greatest sum of any subvector in an existing vector. Then you add a single
element to the end of the vector. If this changes what the subvector with the greates sum
is, what must be true about the new greatest subvector? What extra piece of information

(besides the current greatest sum and the value of the new element) would you need to
immediately determine whether the new element changes the greatest subvector? Now
consider processing the Vector from left to right. How is this like the situation just
described?

e) Finish the following table of run times of the previously described algorithms based on
the big-O time of the algorithms:

Algorithm O(N^3) O(N^2) O(NlogN) O(N)
Size of N
100 3 seconds .1 seconds .03 seconds .003 seconds
200
1000
10000

