
CS106B Handout #11
J Zelenski Jan 16, 2008

Program Grading

Your CS106 programs will be graded on two major areas: functionality and design/style. Although
you will often concentrate your efforts on getting the program "to work" (whatever that takes!) you'll
learn that our expectations go beyond just working— we also want an elegant, well-engineered
solution. A program can truly be a work of art and something you can be proud of when showing
off both the executable and the code.

Functionality Functionality denotes whether or not the program performed as expected i.e. did it
meet all the requirements set out in the assignment handout. For this evaluation,
we examine your program's behavior from an external perspective, without looking
at the code. We will test your program on many different inputs to determine its
correctness in a variety of situations.

Design/style Design and style capture whether the program has a clean and elegant organization
that is easy to read and understand. Does it employ principles of good
decomposition and re-use/unify rather than repeat code? Does it make well-
reasoned choices for data structures? Would it be easy to maintain and/or extend?
Are the variables and procedures meaningfully named? Does it have descriptive
and accurate comments? Are the layout choices readable and consistent (use of
white space, capitalization, punctuation, etc.)? For this evaluation, we carefully read
the code and offer constructive input on your choices.

Each category is assigned a grade using a bucket scale (the two different scales used are described
below). Rather than resorting to nit-picking and summing up points, we want to provide a clear
overall sense of your program’s strengths and weaknesses in these areas, and we believe a fairly
coarse bucket scale is best for this. The total assignment score is the sum of the scores, the two parts
are equally weighted. It is possible for a perfectly functional program to earn a low score in style
and vice versa. We encourage you to make your program shine in both areas!

Interactive grading
Programs will be graded in a one-on-one conference with your section leader. Past 106 students
seem in strong agreement that this interactive grading is one of the course's best features. Your
section leader will discuss with you the specifics of where your program excels and where you can
improve for next time. Their feedback and nourishment can help guide you in your passage from
programming novice to accomplished software engineer. The grading conference is a marvelous and
rare opportunity for intense, personal feedback. I hope you'll find it a lot more useful and inspiring
that getting a returned paper marked with a numeric tally.

Functionality scale
Below is an explanation of the scale we will be using to express the level of functionality in a given
program. Pay special attention to the message— each bucket is designed to send a clear indication
of where you stand relative to our standards that should help you decide how to proceed from here.

+ An exceptional program—one that works correctly in all situations and
exceeds our expectations, going above and beyond the assignment
requirements. Super work! We cannot find fault and would love to show
such a program to the entire class as an extraordinary example. Only
about 5% of the programs receive this grade and it is never given out
unless a + was also received for style. The message: "Fantastic work,
congratulations!"

+ An excellent program—one that meets all of the requirements gracefully
and has only minor flaws. Your section leader may be able to provide
suggestions for some small adjustments or quibble with a few things, but
these programs are overall very well-done and distinguish themselves in
all areas. Perhaps a third of the programs will receive this grade. The
message: "Great job, keep it up!"

A good, solid program—one that is complete and generally meets the
requirements of the assignment, although perhaps some parts could have
been handled better. Your section leader can provide feedback on what
can be improved upon for next time. This is the median grade and we
expect around half of the programs will be given this grade. The
message: "Good work."

- A program with room for improvement. The program doesn’t quite meet
all of the requirements of the assignment, perhaps because it is a bit
incomplete or has errors with one or more required components. With a
bit more work it could be a good program. Your section leader can help
you to understand where to go from here. The message: "Hang in there,
try to learn what you need to move forward."

- A troubled program. The program exhibits serious problems and/or is
an incomplete attempt, but it does show some understanding and effort.
This grade indicates that improvement needs to be made immediately.
The message: "Time to get serious about getting back on track."

-- A very incomplete program. This score usually indicates the program
had very little effort put into it and/or has serious errors. A large amount
of work needs to be done before this program would work correctly. The
message: "Talk to instructor before it's too late!"

0 No program turned in at all.

On some assignments there will be an opportunity for extensions beyond the standard assignment
requirements. Doing this extra credit will potentially earn you between one and four Gold Stars of
Valour. These will be figured into your final grade, but not your assignment grade. Also, note that
while they do count, extra credit will not make up for a problematic assignment. Thus make sure you
have thoroughly tested your assignment core before moving on to any extensions! Ultimately the
main part of the assignment is the real meat and extensions are just gravy.

Design/style scale
There are fewer buckets in the design/style scale and we hope for the scores to be a bit higher than
functionality. Below are the buckets used for this evaluation:

+ A well-engineered, sensible, and readable program. Bravo! The
overall approach is straight-forward, data structure is cleanly
organized, tasks are nicely decomposed, algorithms are clear and easy
to follow, comments are helpful, layout is consistent— an overall
polished production. All students are capable of achieving this result
and we encourage you to set your goal high. We expect it will take
some feedback and iteration before your work is this graceful, but by
the end of the quarter we would love to give out half or more grades
in this bucket.

A program that exhibits reasonably good design and style. The
program clearly makes a sincere effort toward an elegant solution, but
it may not be entirely consistent, have a few minor problems or
perhaps a more major issue that needs attention. Your section leader
will be able to offer constructive ideas on how to tidy up and refine
your work.

- A problematic program. The program has more significant flaws in
terms of design and style, either due to carelessness or lack of
coaching on these important aspects of programming. We encourage
you to work closely with your section leader to develop better
awareness of these issues and are happy to offer lots of concrete
suggestions for improvement. Certain programs, such as those that
are very incomplete, will automatically be placed in this bucket.

0 No program turned in at all.

A typical criteria
Although your particular section leader will personally be responsible for evaluating your program
and meeting with you to discuss the feedback, all section leaders are working from standardized
criteria that establish our class-wide grading standards. The course staff collaborates on drawing up
specific criteria for each assignment and then each section leader applies the same criteria to their
students' submissions.

Our functionality criteria typically consist of a listing of specific test cases to exercise the program
on. The section leader compiles and runs the student program, attempts each of the specified test
cases, and summarizes the results. We design our test cases to be as isolated as possible so that a
previous error doesn't cascade into another. Each test case is weighted to account for its relative
importance to the overall substance of the program. Significant weighting is given to the mainstream
features (i.e. the most common inputs, straightforward cases) and less attention is paid to the more
fringe behavior (i.e. error handling, edge cases). For a program such as Battleship, some of the
mainstream test cases would be observing the program's handling of user input (clicking on an
empty cell, hitting a ship, sinking a ship, etc.). Clicking off the board is an example of a more minor
concern. Severe functionality errors include missing required features and any sort of crash under
normal operation.

To earn a functionality +, a program should not exhibit any major functionality flaws. It might have
an issue or two some minor functional details. A program may have a bit more troubles, but will
still largely work as required by the assignment specification. Programs that earn - and below
typically represent programs with more serious functionality issues— unimplemented/broken
features, program crashes, and the like.

Our design/style criteria would be a specific list of issues to consider for the particular assignment in
question. Like the functionality entries, the issues are weighted to account for their relative
importance. An example of a major design/style error would be a poorly designed data structure that
necessitates a lot of awkward coding through the program. A medium-importance issue might be
failing to seize an opportunity for code unification or factoring to avoid code repetition. More minor
issues would be forgetting to use named constants or inconsistent capitalization. Some issues, such
as inadequate commenting or poor decomposition, can be very major (if the entire program suffers
from it) to quite minor (if only a small portion is affected).

In order to earn a +, a program should have no major designs/style flaws, although we may have
some suggestions for improvement on a few smaller issues. Overall these programs are examples we
would be happy to share with other students to demonstrate what to strive for. A program
represents a solid attempt, but with some medium/minor missteps (or perhaps even an isolated major
issue) and we know you can do better with some good feedback and a little more focused effort. -
represent programs with more significant concerns. With some directed coaching on the particular
issues at hand, willingness to ask for advice when in doubt, and prioritizing these issues, most
students are able to bounce back from any early design mishaps,

Lateness
After your self-granted extensions have been exhausted, late programs are penalized approximately
one bucket per class day late. Furthermore, note that no assignment will be accepted more than three
class days after its original due date. This is a strong incentive for you to plan your schedule to meet
the deadlines and conserve your valuable late days for true necessity. Since the programs are
assigned one after another, it is also important to consider the impact of late work on the next
assignment. Don't let the "domino effect" bring your entire quarter down!

