CS106B Handout #8
Winter 07-08 January 14, 2008

Section Handout #1

Sections will meet once a week to give you a more intimate environment to discuss
course material, work through problems, and raise any questions you have. Each week
we will hand out a set of section exercises, which are the problems proposed for section
that week. While we will not be collecting or grading these problems, you will receive
greater benefit from section if you’ve looked over the problems in advance and tried to
sketch solutions. Your section leader won't necessarily cover every exercise in depth, so
be sure to speak up if there are particular problems you'd like to focus on. Solutions to all
problems will be given in section so you can work through any remaining exercises on
your own. Many of our section exercises have been taken from old exams, so they are
also an excellent source of study questions when exam time rolls around.

Problem 1: Removing all occurrences of characters
Write a function Censorstring that takes two strings as input and returns the first string
with all of the characters that are present in the second removed.

"Stanford University" with “nt” removed becomes "Saford Uiversiy"
"Llamas like to laugh" with “la” removed becomes "Lms ike to ugh"
andsoon. ..

Note that the function is case sensitive. This function could be written two ways. One
way is to return a completely new string, and the other is to modify the original string.
For practice write both of these functions. First write a function that returns a completely
new string with the following prototype:

string CensorStringl (string text, string remove);

and then write a function that modifies the original string with the following prototype:

void CensorString2(string & text, string remove) ;

Problem 2: Files and Structs

When we grade your exams, we’re going to keep track of some statistics like the min,
max and average scores. Define a struct containing these statistics. Then, write a
function that takes a filename, reads the scores from it (one per line where 0 <= score <=
100), and returns the struct you defined. For efficiency’s sake, your function should
make only a single pass over the file.



Problem 3: Vectors

Write a function CountLetters that takes a filename and prints the number of times
each letter of the alphabet appears in that file. Because there are 26 numbers to be
printed, CountLetters needs to create a Vector. For example, if the file is:

Abcd K.
ijk;;
cab-Bage
fad

CountLetters should print the following:

/o oR
NS NN FU TN AN

z: 0

When you really print this out, it should be 26 elements long, but we couldn't easily
display that on the page. Note that there may be upper case letters, lower case letters, and
non-letter characters in the file. All letters should be counted regardless of case (so “Aa”
is two a’s), and non-alphabetic characters should be ignored. You should use the
following prototype.

void CountLetters(string filename) ;

Problem 4: Memory Diagram
Trace through the following bit of code and draw a diagram showing the contents of
memory at the indicated point. Be sure to differentiate between the stack and the heap.

struct heroT ({
string name;
string weakness;
int powerLevel;

};

struct villianT {
string name;
string evilPlan;
int attackLevel;

};

void Battle (heroT aang, villianT & zuko)
{
int pos = 1;
int level = aang.powerLevel;
string name = zuko.name;



while (level > 20)
{

zuko.evilPlan[pos--] -= (level / 10);
level /= 2;

}

zuko.attackLevel -= level;

pos = name.find(aang.weakness) ;

while (pos !'= string: :npos)

{
aang.powerlevel /= 2;
name.replace(pos, 2, "");
pos = name.find(aang.weakness, pos);

}

if (aang.powerLevel > zuko.attackLevel)

{

zuko.name = "Loser";
}
else
{
aang.name = "Big Baby";

}

/* DRAW THE STATE OF MEMORY HERE */

return;

}

int main ()

{
heroT julie;
villianT tom;

julie.name = "Super Lecturer";
julie.weakness = "Gr";
julie.powerLevel = 60;

tom.name = "Grumpy Grad Student";
tom.evilPlan = "Frowning";
tom.attackLevel = 30;

Battle (julie, tom);

return O;



